

Standard Information

A DC motor is an electric motor that runs on direct current (DC) and converts electrical energy into mechanical energy. When paired with a relay, the motor can be controlled more efficiently and safely in various applications.

Electrical Safety 🔥 CAUTION

- Voltage and Current Ratings: Ensure the DC motor and relay are rated for the supply voltage and current. Operating outside these limits can lead to overheating or equipment failure.
- Short Circuit Protection: Install a fuse or circuit breaker appropriate for the motor's current rating to protect against short circuits and overcurrent.
- Reverse Voltage Protection: Use a flyback diode across the relay coil and motor terminals to handle voltage spikes caused by the inductive load.
- Insulation: Verify that all wiring is properly insulated to prevent accidental contact and short circuits.
- Grounding: Ensure the motor casing and relay control circuit are properly grounded to avoid electric shock hazards.

Safety Considerations 🔥 🖾

1. Electrical Protection

• Fuse or Circuit Breaker: Install an appropriately rated fuse or circuit breaker in the motor's power line to protect against overcurrent.

2. Thermal Protection

• Install a thermal overload relay or temperature sensor to shut down the motor in case of overheating.

3. Grounding

• Ensure proper grounding for the motor and control circuit to avoid electric shock and improve safety against short circuits.

4. Emergency Shutdown

• Provide an accessible emergency stop button or kill switch to instantly disconnect the motor.

Email: sales@flowfitonline.com

Wiring the circuit 🔥 🔀

1. Power Supply:

- Connect the positive terminal of the power supply to the relay's Common (COM) terminal.
- Connect the Normally Open (NO) terminal to the positive terminal of the motor.

2. Motor Connection:

• Connect the motor's negative terminal directly to the power supply's ground.

3. Relay Control Circuit:

- Connect one side of the relay coil to the control circuit or switch.
- Connect the other side of the coil to the ground.

4. Flyback Diode:

• Install a flyback diode across the relay coil terminals to prevent back EMF damage when the relay switches off. The cathode (stripe) should face the positive side of the coil.

5. Optional Control Circuit:

• Use a microcontroller, transistor, or manual switch to control the relay's activation.

Testing and Verification

- Continuity Test: Check the wiring connections with a multimeter before powering the circuit.
- Load Test: Power the circuit and verify the relay switches the motor on/off properly.
- Functionality Check: Test emergency stop and protection devices (e.g., fuse blows under fault conditions).

Important Notes:

- Adhere to all local regulations and safety standards when installing and using these products
- Contact us for technical support or if additional guidance is needed.